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SUMMARY 

The Navier-Stokes equations for a steady, viscous rotating fluid, rotating about the z-axis with angular 
velocity w are linearized using the Stokes approximation. The linearized Navier-Stokes equations governing 
the axisymmetric flow can be written as three coupled partial differential equations for the stream function, 
vorticity and rotational velocity components. One parameter, Re,  = 2wa2/v, enters the resulting equations. 
For Re,  << 1,  the coupled equations are solved by the Peaceman-Rachford A.D.I. (Alternating Direction 
Implicit) method and the resulting algebraic equations are solved by the ‘method of sweeps’. Stream lines 
for i+b =0.05, 0.2, 0.5 and magnitude of the vorticity vector z = 0.2 are plotted for R e ,  = 0.1, 0.3, 0.5. 
Correction to the Stokes drag due to the rotation of fluid is calculated. 

1. INTRODUCTION 

The Navier-Stokes equations are non-linear. The problem of axisymmetric flow past a sphere 
could not be solved analytically except by methods which first linearize the equations. Stokes5 
linearized them by neglecting the intertia terms in comparison with viscous terms and solved the 
equations. The Stokes solution is not uniformly valid throughout the flow field. Whitehead* tried 
to iterate on the Stokes solution and found that the condition at infinity could not be satisfied. 
Oseen4 gave a solution, taking into consideration inertial terms, linearly where the condition on 
the body is satisfied approximately. Oseen’s solution of linearized equations has been improved by 
Goldstein’ and by Tomotika and Aoi6. 

The present problem consists of the governing differential equations which are the result of the 
Stokes type of linearization on the Navier-Stokes equations for the steady, incompressible, viscous 
rotating fluid, rotating about the z-axis with a uniform angular velocity w. We obtain the three 
coupled equations when they are expressed in stream function $, vorticity ( and rotational velocity 
component R = r sin OV4; u4 is the swirl velocity. The equations are solved numerically by the 
Alternating Direction Implicit (A.D.I.) m e t h ~ d . ’ . ~ . ~  

2. FORMULATION OF THE PROBLEM 

We consider the steady, slow, viscous rotating fluid which is in solid body rotation, with angular 
velocity w about the z-axis and moving with a uniform velocity U along the z-direction. A sphere of 
radius a is introduced into the flow and kept fixed at the origin. We used spherical polar co- 
ordinates (r,O,4),  and since the flow is axially symmetric about the z-axis, all quantities are 
independent of 4. The Navier-Stokes equations are 
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where 

and I) is the stream function, Reynolds number Re = Ua/v  is the kinematic viscosity, U is the 
uniform stream and R is the angular velocity. The above equations are written in non-dimensional 
form by taking 

% = u $ ,  c=- 2 0 a  Re,=-, 2 0 a 2  
U U ’  V 

where the primes denote dimensional quantities. The velocity components are given by 

o r = - -  1 a* v,= 1 a* 
r2 sin 6 ae ’ rs in8 ar 

and the swirl component 

R 
Ug = ~ 

rs in8’  

For slow motion and rotation the Navier-Stokes equations are linearized by taking v,, v,, v? as 
(or ,  0 0 ,  vg + o r  sin 0)  and neglecting squares and products or velocities. The linearized Navier- 
Stokes equations for the steady, viscous rotating fluid, rotating about the z-axis are the three 
coupled equations 

D2$= -rsinOc= -c l ,  ( 3 )  

where [ is the vorticity. 
Equations (3) ,  (4) and (5) are to be solved with the following boundary conditions. 
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and 

for 

and for the vorticity 

a s r+oo  
I,!I = Sr' sin' 6 

n = - r Z s i n 2 6  
c 
2 

= O"' ' = '1 axis of symmetry 
e=i8oo,  + = o  

the boundary conditions for 

' = '"9 ' = '1 axis of symmetry e =  1800, c = o  (9) 

5-0 as r -+co .  (10) 

The conditions for 5 at the surface of the sphere have to be determined from the condition of zero 
velocity at the surface, i.e. a$far = 0. 

3. FINITE DIFFERENCE EQUATIONS 

We assume that the sphere is situated on the axis of a cylindrical pipe of diameter approximately 
7 times the sphere diameter and at the nearest lattice points to the pipe surface we assume the 
flow to be undisturbed and parallel. We choose boundary conditions at  the surface of 
the containing pipe such that no flow through the pipe surface is ensured and that the velocity 
gradient at the surface is zero. This prevents the establishment of a parabolic velocity 
distribution in the pipe which would only confuse the results. These conditions are almost 
equivalent to the practical case of a sphere moving with uniform velocity along the axis of the 
pipe. We set r = ez in (2)-(10). The lattice points are the points of intersection of the circles 
z = constant and 6 = constant shown in Figure 1. The nodal points are P(z i ,  O j ) ,  Q(zi+ O j ) ,  

Z-0 0.4 0.8 1.2 1.6 2.0 

THE LATTICE 

Figure 1. Finite difference mesh used for obtaining $ 
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R(z i ,  O j +  and T(zi-  dj ) .  The length z = 0 to z = 2 is divided into 9 parts with step 
size h = 0.2, and 0 = 0 to 0 = n is divided into 9 parts with step length k = 10". We have in this 
lattice 81 nodal points. Finite difference equations of order h2 and k 2  are written at each point 
for (3), (5) and the boundary conditions in (6)-(10). We denote at any point ( z i ,  ej) of $, i and 
R by i ,bi,j,  and Q j .  At each nodal point ( z i ,  ej) the finite difference equations (using central 
difference) are 

S ( z i ,  0,- 

2h 

+ -+- $ i - I , j +  -l cote .  1 ) ( C y k e j  + - ;2) $ i , j -  1 - -$i , j ,  2 k 2  2k +p $ i , j + l +  ~ (h12 i h )  ( 
1 sin ej 

2k + 1 , j  - Q i  - 1 , j )  - -(Qi,j + 1 - Qi , j -  I ) 

With the boundary conditions 

ao, j=+o, j=(g) = O  on z = o  
0 , j  

on the container pipe z = 2 

$lo,jN$(e4 sin2 ej) 

R,o , j2e4~in2dj  C 

C 10, j+ 0. 

On the surface of the sphere, that is z = 0, 

The three coupled equations (1 1 )  to (14) with the boundary conditions (14) to (16) are solved 
using the Peaceman-Rachford A.D.I. method. In this method, the equations (1  1)-(13) are written 
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in two steps; they are as follows. 

(i) Horizontal sweep (along r = constant). 
(ii) Vertical sweep (along 8 = constant). 

The well known A.D.I. and successive line over-relaxation (SLOR) methods are applied to 
elliptic equations. A brief resume of the Peaceman-Rachford A.D.I. method which is applied to the 
problem solved is given here. The A.D.I. method applied here is a two-step method involving the 
solution of a tridiagonal set of equations along lines parallel to the x1 and x 2  axes as the first and 
second steps, respectively. We consider the system of algebraic equations 

A u = b  (17) 

A = H o + V o + C ,  (18) 

which is based on the splitting of the matrix A into the sum of three matrices 

where C is a non-negative diagonal matrix, and H,,  V, and C satisfy the following conditions: 

(a) H ,  + BC + p l  and U ,  + 8Z + p l  are non-singular for any p > 0,8 3 0; 
(b) for any vectors c and d and for any constants p > 0 and 8 >, 0, it is convenient to solve the 

system 

( H ,  + ec + p z ) X  = c, (v, + ex = d (19) 

for x and y respectively. 

and U ,  corresponds to the term with derivatives in y. p and 8 are accelerating parameters. 
Here H ,  and V,  are triangular matrices and H ,  corresponds to the term with derivatives in x, 

Let us write (17) in the forms 

( H ,  + 8C + p I ) u  = b - (V, + (1 - 8)C - p l ) u ,  (20) 

( U o  + OX + p I ) u  = b - ( H ,  + ( I  - @C - (p'I)u.  (21) 
In the Peaceman-Rachford method (1955) one selects positive iteration parameters p and p' 
and determines u("+ '1') b Y 

( H o + ~ C + p I ) u ' " + 1 1 2 ~ = b - ( V o + ( 1  - 8 ) C - p I ) u " .  (22) 

(23) 

H = H 0 + 3 Z ,  V =  V O + 3 C .  (24) 

Then one determines u n + l  by 

(V, + 8C + pI)u"+' = b - (H, + (1 - 8)C - ~ I ) u " + ~ ' ~ .  

For simplicity, we consider here the special case where 8 = 8= 1/2, p = p' and we let 

H and Vsatisfy the following conditions: 

(a) H + pZ and V+ pZ are non-singular for any p > 0; 
(b) for any vectors c and d and for any p > 0 it is convenient to solve the systems 

( H  + pZ)x = C, ( V +  p I ) y  = d .  (25) 

Thus (17) becomes 
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and (22) and (23) become, respectively, 

( H  + pl)u("+ 'I2) = b - ( V -  p l ) ~ ' " ' .  

Horizontal sweep 

( V + p l ) ~ ' " + ' ) =  b - ( H  - p l ) ~ ( " + ~ / ' ) .  

Vertical sweep 

The determination of u("+ ""(x, y) involves the solution of a linear system with a tridiagonal 
matrix. This is also true for the determination of u("+ ')(x, y). 

This split formula with u("+l/') and u("+') was introduced for the first time by Peaceman and 
Rachford and is therefore referred to in the literature as the Peaceman-Rachford formula. Since 
computation is done alternately in two directions and is implicit, it is called the A.D.I. method. The 
completjon of these two steps constitutes a step forward in time. 

Equation (1 1) is written in the form for horizontal sweep: 

At any point (zi, Oj) we have 

The matrix form for all the points is 

where 

and 

CHI [$I = b 

are unknowns. 
For vertical sweep 

At any point (zi,Oj) we have 
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The matrix form for all the points is 

CVI C$l = Cbl 
where 

and 

are unknowns. 
We write equations (29) and (30) in the following form: 

( H  - p l )  $(" + 1/2) = b - (I/ - p l )  $@), 
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(30) 

( V -  pl)$'"+" = b- (V-p l )$ '"+ ' '2 ' ,  (32) 
where I is the unit matrix, p is the acceleration parameter, and H and V are horizontal and vertical 
matrices. 

The $(") are unknowns. Using initial values for $(") and { which are zeros, we obtain $("+1/2).  

Using $("+ 1'2) in equation (32) we obtain $("+ '). Similarly we can write for equations (12) and (13). 
In this method, to ensure diagonal dominance, the acceleration parameter p is chosen as 130. 

Iterations used for convergence 

The number of iterations required to ensure convergence in the solution of equations (1 1)-(13) 
with the boundary conditions (14)-( 16) are given in Table I. 

Equation (13) had to be iterated ten times before two successive iterated values of R were 
coincident. These R values are used in equation(12) to obtain [l.[l values are then used in 
equation (1 1) which is iterated ten times to obtain the $ values. The process had to be repeated ten 
times before convergence was obtained. The starting values for $, cl and R are taken as zeros. 

There is a good coincidence for horizontal and vertical sweeps at the point (zi,Oj), 
where ( i , j )  = 1,2,. . . ,9 .  

A computer program for the Peaceman-Rachford A.D.I. method where lattice points are the 
points of intersection on z = constant (circles) and 0 = constant (lines) and not as vertices of 
rectangles has been developed on an IBM-370/155 compute. The resulting algebraic equations are 
solved by the method of sweeps. We divide the mesh into nine blocks, where each block is a 
tridiagonal system. 

Table I .  

Equation Number of 
number iterations 
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4. RESULTS 

For the set of values Re,  = 0.1,0.3,0.5 the stream function $ is given in Table I1 for the method of 
sweeps. The vorticity components 5, q and c are given by 

Hence the magnitude of the vorticity is equal to Jt2 + q2 + c2. For the same values of Re,, the 
magnitude of the vorticity vector is given in Table 111 for the method of sweeps. In Table IV the 
Stokes stream function is given so as to compare with the rotating case. The effect of rotation on the 
Stokes drag, D,, is found as shown in Table V. 

Table 11. Solution Re,  = 0.1: stream function 

4 0  18 54 90 126 162 

0.2 0.004879 0.03 17 14 0.047023 0.030108 0.004445 
0.4 0.022604 0.147086 0.218541 0.140284 0.020754 

0055680 0.6 0.0602 15 0.392453 0.584295 
0.8 0.128278 0.837804 1.249890 0.805354 0.1 19397 
1 .o 0.242125 1.585768 2.370996 1.530107 0.226872 
1.8 1.732000 1 1.67 1254 17.72 1466 11.546071 1.694576 

Solution Re,  = 03: stream function 
0.2 0005289 0.033733 0.048 164 0.029243 0.004 107 
0.4 0024335 0155682 0.223549 0.1 36754 0.019340 
0.6 0.0643 5 7 0.413275 0.596686 0.367287 0.058204 
0.8 0 136066 0.877610 1.273873 0.788316 0.1 12470 
1 .o 0.254744 1.65 1677 2.4 10841 1.499534 0.214595 
1.8 1.748600 11.775170 17.779053 11.459915 1.664309 

Solution Re,  = 05:stream function 
0 2  0.005652 0.03591 1 0.0501 87 0029099 0.003 8 65 
0.4 0.025862 0.164966 0.232416 0.136392 0.01 8346 
0.6 0.067921 0.435549 0618580 0.366566 0.049746 
0 8  0.142488 0.9 19384 1.3 16137 0786426 0.107419 
1 .o 0264512 1.718857 2.480821 1.494087 0.205185 
1.8 1.756028 11.861333 17.878387 11.405913 1.632364 

0 3 7 5 8 3 9 

Table III 

18" 36" 54" 72" 90" 108" 126" 144" 162" 

Solution Re,  = 0.1: magnitude of the vorticity vector at z = 0.2 

0780952 1.238541 1.618835 1.855525 1.921924 1.815028 1.551643 1.166812 0.725414 

Solution Re,  = 0.3: magnitude of the vorticity vector at z = 0.2 

0.841009 1.320202 1.704112 1.922181 1.953064 1.805706 1.510990 1.1 14305 0.681474 

Solution Re, = 0.5: magnitude of the vorticity vector at z = 0.2 

0902201 1.405 162 1.798653 2.005910 2.007921 1.822920 1.494880 1.080447 0648461 
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= 0.5 

= 0.2 

= 0.05 

Rotating viscous fluid - - - Non- rotating viscous fluid 

Figure 2. Stream lines for method of sweeps 

The effect of rotation is to increase the drag, and as Re,  increases, the drag increases. 
The stream lines are plotted in Figure 2 for the method of sweeps for Re,  = 01,  0.3, 0.5 and 

$ = 005,02,0.5. The dashed lines in each figure give the Stokes stream lines for the same values 
of $. The magnitude of the vorticity vector for z = 0 2  and Re,  = 0.1, 0.3 and 0.5 is plotted in 
Figure 3. The dashed line in Figure 3 give the vorticity for the non-rotating case at z = 0.2. The 
effect of increasing Re,  is to increase the magnitude of the vorticity vector at z = 0.2 for the 
rotating case. 
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Table IV. Stokes stream function 

Z P  18 54 90 126 162 

0.2 0.00330 1 0022620 0.034543 0.02258 1 0.003277 
0.4 0.01 5432 0.105747 0161482 0.103362 0.01 53 1 7 
0.6 0.04 1 156 0.282027 0.430672 0.281533 0.040851 
0.8 0.087888 0.602263 0.9 19692 0.601208 0.087237 
1 .o 0.167023 0.604246 1.747784 0.142536 1.165785 
1.8 1.319063 9.03904 1 13.803 165 9.0232 10 1.309291 

~ ~~~ 

Vorticity (Stokes flow) at z = 0.2 

18" 36" 54" 72" 90" 109" 126" 144" 162" 

0.117360 0.424578 0.804221 1.111169 1.228093 1.110298 0.802813 0.423169 0,116490 

Table V. 

0.05 1.163709 D, 
0.1 1.167890 D, 
0.24 1.211938 D, 
0.3 1.22692 D, 

D, = 6npaU 

Rotating viscous fluid 

--- Non - rotating viscous fluid 

I?,, = 0.5 

" L  

> 
z1 

U 

c .- 
.- 
c L 

B 
5 
b) 

r 
0 

/// / \ 

0 k' I I I I 
0 36 72 108 144 180 

8. - 
Figure 3. Magnitude of the vorticity vector for z = 0.2 
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