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~ SUMMARY

The Navier—Stokes equations for a steady, viscous rotating fluid, rotating about the z-axis with angular
velocity w are linearized using the Stokes approximation. The linearized Navier—Stokes equations governing
the axisymmetric flow can be written as three coupled partial differential equations for the stream function,
vorticity and rotational velocity components. One parameter, R, = 2wa®/v, enters the resulting equations.
For R,, « 1, the coupled equations are solved by the Peaceman—Rachford A.D.L. (Alternating Direction
Implicit) method and the resulting algebraic equations are solved by the ‘method of sweeps’. Stream lines
for ¥ =005, 0-2, 0-5 and magnitude of the vorticity vector z=0-2 are plotted for R., =01, 03, 0-5.
Correction to the Stokes drag due to the rotation of fluid is calculated.

1. INTRODUCTION

The Navier—-Stokes equations are non-linear. The problem of axisymmetric flow past a sphere
could not be solved analytically except by methods which first linearize the equations. Stokes®
linearized them by neglecting the intertia terms in comparison with viscous terms and solved the
equations. The Stokes solution is not uniformly valid throughout the flow field. Whitehead?® tried
to iterate on the Stokes solution and found that the condition at infinity could not be satisfied.
Oseen* gave a solution, taking into consideration inertial terms, linearly where the condition on
the body is satisfied approximately. Oseen’s solution of linearized equations has been improved by
Goldstein? and by Tomotika and Aoi®.

The present problem consists of the governing differential equations which are the result of the
Stokes type of linearization on the Navier—Stokes equations for the steady, incompressible, viscous
rotating fluid, rotating about the z-axis with a uniform angular velocity w. We obtain the three
coupled equations when they are expressed in stream function i, vorticity { and rotational velocity
component Q =rsinfV,; v, is the swirl velocity. The equations are solved numerically by the
Alternating Direction Implicit (A.D.L}) method.!"-®

2. FORMULATION OF THE PROBLEM

We consider the steady, slow, viscous rotating fluid which is in solid body rotation, with angular
velocity w about the z-axis and moving with a uniform velocity U along the z-direction. A sphere of
radius a is introduced into the flow and kept fixed at the origin. We used spherical polar co-
ordinates (r, 0, ¢), and since the flow is axially symmetric about the z-axis, all quantities are
independent of ¢. The Navier—Stokes equations are
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and ¥ is the stream function, Reynolds number R, = Ua/v is the kinematic viscosity, U is the
uniform stream and Q is the anguiar velocity. The above equations are written in non-dimensional
form by taking

= = r’ —_—= B v 5
a’U o
v, 2wa 2wa?®
2=y, c="r =
u v’ % v
where the primes denote dimensional quantities. The velocity components are given by
1 oy 1 oy
v, = 2 . Zas Vg = — - A
r*sinf 0 rsinf or
and the swirl component
Q
v,=—".
¢ rsind

For slow motion and rotation the Navier—Stokes equations are linearized by taking v,, vy, v, as
(v,, v, v, + wrsinf) and neglecting squares and products or velocities. The linearized Navier—
Stokes equations for the steady, viscous rotating fluid, rotating about the z-axis are the three
coupled equations

D%y = —rsin = —{,, 3)
0Q  sin0oQ
D%, =R 0————
‘i °°°<°°s o r 59)’ @
oY sinfdy
20=—R —
D w(cos or r 00 >’ )
where { is the vorticity.
Equations (3), (4) and (5) are to be solved with the following boundary conditions.
0
Q:a//=—¢=0 on r=1 6)

or
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and
Y =4r*sin?0
' 2c as r— oo )
Q=_r*sin?6
2
for
= ° = 0
z_ (1)8,0° y= 0} axis of symmetry 8)
and for the vorticity
(= - D
_ " rsinf ’
the boundary conditions for
Zi (1)8’0" g i 8} axis of symmetry )
{—»0 as r—oo. (10)

The conditions for { at the surface of the sphere have to be determined from the condition of zero
velocity at the surface, i.e. y/0r = 0.

3. FINITE DIFFERENCE EQUATIONS

We assume that the sphere is situated on the axis of a cylindrical pipe of diameter approximately
7 times the sphere diameter and at the nearest lattice points to the pipe surface we assume the
flow to be undisturbed and parallel. We choose boundary conditions at the surface of
the containing pipe such that no flow through the pipe surface is ensured and that the velocity
gradient at the surface is zero. This prevents the establishment of a parabolic velocity
distribution in the pipe which would only confuse the results. These conditions are almost
equivalent to the practical case of a sphere moving with uniform velocity along the axis of the
pipe. We set r =¢” in (2)—(10). The lattice points are the points of intersection of the circles

z=constant and 0 = constant shown in Figure 1. The nodal points are P(z;,0;),Q(z;+,,0),

THE LATTICE

Figure 1. Finite difference mesh used for obtaining y
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R(z;,0,+1),8(z;,0;~,) and T(z;_,0;). The length z=0to z=2 is divided into 9 parts with step
size h=02, and 8 =0 to 0 =7 is divided into 9 parts with step length k = 10°. We have in this
lattice 81 nodal points. Finite difference equations of order h? and k? are written at each point
for (3), (5) and the boundary conditions in (6)-(10). We denote at any point (z;,6;) of ¥, and
Qby ¥, ;.(,,, and Q; ;. At each nodal point (z;,6;) the finite difference equations (using central
difference) are

. 11 2
‘32"'(£1s.j)=(h—2—2“h>l//i+1,j+<_h7>lpi,j
1 1 cotf;, 1 cotd; 1 2
+<F+ﬁ>wi—l,j+(_—2k J+F>¢i,j+l +<_2k J+P>¢i.j—l _Fll’i‘j’ (1)

sinéd;

cos 8,
—‘Rewe[ J(le; Qi—l,j) J(sz+1 Qi,j—l):\

11 2 1
=(h_2_ﬂ)Cli+l.j_h—2C1i.i+<h2 >C1‘ 1.
cot@ 1 cotd; 1
+<_ 2k )Cl.,+1 szl;, +< 2k F)Clu#” (12)

9 8.
—R.€ [“’S VR S - t//.-,j-l)}

1 1 2 1 1
=<h7_ﬁ)gi+l.j hzg +<h2 E)Qi—u

—cotf; 1 2 cotf 1 13
+< K J+k—2>9i.j+1"k—29i.j+< 2ky+k_2>Qi,j—1' (13)
With the boundary conditions
oy
Qol=l/l0’j=<gz_>o,=o on Z:O (14)
J

on the container pipe z =2

Wi, ~ile* sin?6,)

Qm,,.ge‘t sin20, (15)
{10,—0.
On the surface of the sphere, that is z =0,
8Y 1, — V2,
y=| —2—= ] 16
So. < 2h?sinf; (10

The three coupled equations (11) to (14) with the boundary conditions (14) to (16) are solved
using the Peaceman—Rachford A.D.I. method. In this method, the equations (11)—(13) are written
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in two steps; they are as follows.

(i) Horizontal sweep (along r = constant).
(i) Vertical sweep (along 0 = constant).

The well known A.D.I. and successive line over-relaxation (SLOR) methods are applied to
elliptic equations. A brief resumé of the Peaceman—Rachford A .D.I. method which is applied to the
problem solved is given here. The A.D.I. method applied here is a two-step method involving the
solution of a tridiagonal set of equations along lines parallel to the x; and x, axes as the first and
second steps, respectively. We consider the system of algebraic equations

Au=b (17)

which is based on the splitting of the matrix 4 into the sum of three matrices
A=H,+Vy+3, (18)
where Z is a non-negative diagonal matrix, and H,, V, and X satisfy the following conditions:

(@) Hy+0Z + pI and Uy + 0 + plI are non-singular for any p > 0,0 = 0;
(b) for any vectors ¢ and d and for any constants p >0 and 8 > 0, it is convenient to solve the
system

(Ho+0X+pDx=c, (Vo+0=+pl)=d (19)
for x and y respectively.

Here H, and V,, are triangular matrices and H, corresponds to the term with derivatives in x,
and U, corresponds to the term with derivatives in y. p and 0 are accelerating parameters.
Let us write (17) in the forms

(Ho+ 6% + phu=b— (Vo + (1 — X — pl)u, (20)

(Uo+0Z+ phu=b—(Hy+ (I — O —(p')u. (21)

In the Peaceman—Rachford method (1955) one selects positive iteration parameters p and p’
and determines u"*1/2 by

(Ho+ 0% + pDu™ YD = b — (V, + (1 — )T — pD)u™. (22)
Then one determines u"*?! by
(Vo+ 0=+ phu**'=b—(Hy+ (1 — O — pHur* 12, (23)
For simplicity, we consider here the special case where § =0 =1/2, p = p’ and we let
H=H,+3%, V=V,+1iZ (24)

H and V satisfy the following conditions:

(a) H+ pI and V+ pl are non-singular for any p > 0;
(b) for any vectors ¢ and d and for any p > 0 it is convenient to solve the systems

(H+phx=c¢c, (V+phy=d. 25
Thus (17) becomes

(H+V)u=b (26)
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and (22) and (23) become, respectively,
(H+ phu"* Y2 =p — (V= pDu™. 27

Horizontal sweep

(V+ phu"*V=b—(H — plHu"* 172, (28)

Vertical sweep

The determination of u™"*1/2)(x, y) involves the solution of a linear system with a tridiagonal
matrix. This is also true for the determination of u™*V)(x, y).

This split formula with 4™*/? and u™* !’ was introduced for the first time by Peaceman and
Rachford and is therefore referred to in the literature as the Peaceman—Rachford formula. Since
computation is done alternately in two directions and is implicit, it is called the A.D.I. method. The
completion of these two steps constitutes a step forward in time.

Equation (11) is written in the form for horizontal sweep:

1 1 2 1 1
<h_2~ﬂ>l//i+l,j-'h—2¢i,j+(h_2+h_2>l//i—1,j= —e*L,, (,j=1,2,...,9).

At any point (z;,0;) we have

l//i+1'

1 1 2 (1 1 "
[(h_—2_h>_h_<h_+iﬁ>]['” }_C (j=1,2,...,9)

‘/’i—l,j

The matrix form for all the points is

[(H][y1="b (29)
where
1 1 2 /1 1
o= (=)~ 3
and
b= —CZZiCIg,j’

are unknowns.

lpi+ 1.j
[W] = lpi,j
Wi—l,j
For vertical sweep

cotf; 1 cotf. 1 2
<_ 2kj+k—2'>‘//i,j+1+<Tj+k_2>'//i,j—l_k_2l/1i,j=b~
) we have
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ij

At any point (z,,8
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The matrix form for all the points is

[V1ly]=[b] (30)
where
—cotf; 1 2 cotd; 1
vi= [<_—_2k +k—2>’ ‘z?r(‘—zk T)]

and

wi,j+1

1= v:;
'pi.j -1

are unknowns.
We write equations (29) and (30) in the following form:

(H—phy" "2 =b—(V—phy™, 31)
(V=pDyY"* D =b—(V—phy"* 1/, (32)

where [ is the unit matrix, p is the acceleration parameter, and H and V are horizontal and vertical
matrices.

The ™ are unknowns. Using initial values for /™ and { which are zeros, we obtain y®*1/2),
Using ¢ *1/2) in equation (32) we obtain " * ). Similarly we can write for equations (12) and (13).
In this method, to ensure diagonal dominance, the acceleration parameter p is chosen as 130.

Iterations used for convergence

The number of iterations required to ensure convergence in the solution of equations (11)—(13)
with the boundary conditions (14)—(16) are given in Table I.

Equation (13) had to be iterated ten times before two successive iterated values of Q were
coincident. These Q values are used in equation (12) to obtain {,+{, values are then used in
equation (11) which is iterated ten times to obtain the i values. The process had to be repeated ten
times before convergence was obtained. The starting values for y,{, and Q are taken as zeros.

There is a good coincidence for horizontal and vertical sweeps at the point (z;,0)),
where (i,j})=1,2,...,9.

A computer program for the Peaceman—Rachford A.D.I. method where lattice points are the
points of intersection on z = constant (circles) and 6 = constant (lines) and not as vertices of
rectangles has been developed on an IBM-370/155 compute. The resulting algebraic equations are
solved by the method of sweeps. We divide the mesh into nine blocks, where each block is a
tridiagonal system.

Table I.
Equation Number of
number iterations
(13) 10
(12) 0

(1) 10
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4. RESULTS

For the set of values R, = 0-1, 0-3, 0-5 the stream function  is given in Table II for the method of
sweeps. The vorticity components &, # and { are given by

100 1L oQ 1 5

~ 080" "“rsm0ar C rsmo- ¥

Hence the magnitude of the vorticity is equal to \/ &2 + % + (% For the same values of R,,, the
magnitude of the vorticity vector is given in Table III for the method of sweeps. In Table IV the
Stokes stream function is given so as to compare with the rotating case. The effect of rotation on the
Stokes drag, D,, is found as shown in Table V.

Table II. Solution R, = 0-1: stream function

z/6 18 54 90 126 162

02 0-004879 0-031714 0-047023 0-030108 0-004445
04 0-022604 0-147086 0-218541 0-140284 0020754
0-6 0-060215 0-392453 0-584295 0-375839 0-055680
0-8 0-128278 0-837804 1-249890 0-805354 0-119397
1-0 0-242125 1585768 2-370996 1-530107 0-226872
1-8 1-732000 11-671254 17-721466 11-546071 1-694576

) Solution R, = 0-3: stream function
02 0-005289 0-033733 0-048164 0-029243 0004107
04 0-024335 0-155682 0-223549 0-136754 0019340
06 0-064357 0413275 0-596686 0-367287 0-058204
08 0-136066 0-877610 1-273873 0-788316 0-112470
1-0 0-254744 1-651677 2410841 1-499534 0214595
1-8 1-748600 11-775170 17-779053 11-459915 1:664309
Solution R, = 0-5:stream function
02 0-005652 0-035911 0050187 0-029099 0-003865
04 0-025862 0-164966 0-232416 0-136392 0-018346
0-6 0-067921 0-435549 0-618580 0-366566 0-049746
0-8 0-142488 0919384 1-316137 0-786426 0-107419
1-0 0-264512 1718857 2-480821 1-494087 0-205185
1-8 1-756028 11-861333 17-878387 11-405913 1-632364
Table III
18° 36° 54° 72° 90° 108° 126° 144° 162°

Solution R, = 0-1: magnitude of the vorticity vector at z =0-2

0-780952 1238541 1-618835 1-855525 1-921924 1-815028 1-551643 1-166812 0-725414
Solution R,,, = 0-3: magnitude of the vorticity vector at z=0-2

0-841009 1:320202 1-704112  1-922181 1953064 1-805706 1-510990 1-114305 0681474
Solution R, =0-5: magnitude of the vorticity vector at z =02

0902201 1-405162  1-798653  2-005910 2-:007921 1-822920 1-494880 1080447 0-648461
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Rotating viscous fluid — — — Non-rotating viscous fluid

Figure 2. Stream lines for method of sweeps

The effect of rotation is to increase the drag, and as R, increases, the drag increases.

The stream lines are plotted in Figure 2 for the method of sweeps for R, = 0-1, 0-3, 0-5 and
Y =005, 0-2, 0-5. The dashed lines in each figure give the Stokes stream lines for the same values
of . The magnitude of the vorticity vector for z=0-2 and R,, =01, 0-3 and 05 is plotted in
Figure 3. The dashed line in Figure 3 give the vorticity for the non-rotating case at z =0-2. The
effect of increasing R.,, is to increase the magnitude of the vorticity vector at z =02 for the

rotating case.
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Table 1V. Stokes stream function

z/0 18 54 90 126 162
02 0003301 0-022620 0034543 0022581 0-003277
04 0-015432 0-105747 0161482 0-103362 0-015317
06 0-041156 0282027 0430672 0281533 0-040851
0-8 0-087888 0602263 0919692 0-601208 0-087237
1-0 0167023 0604246 1-747784 0-142536 1-165785
1-8 1-:319063 9-039041 13-803165 9-:023210 1:309291
Vorticity (Stokes flow) at z=0-2
18° 36° 54° 72° 90° 109° 126° 144° 162°
0117360 0424578 0-804221 1-111169 1228093 1-110298 0-802813 0423169 0-116490
Table V.
Rew Drag
0-05 1163709 D,
0-1 1167890 D,
024 1-211938 D,
03 122692 D,
D, = 6mual.
3 -
Rotating viscous fluid
— — — Non-rotating viscous fluid
Reo = 0.5
0.3
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Figure 3. Magnitude of the vorticity vector for z =02
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